what's the point of...

Oh no...penalties...again!!!

In the summer of 2008, football fans could follow Euro 2008 without the stress of seeing any of the home nations knocked out on penalties (because they never managed to qualify in the first place).

Take England. Out of the last eight major tournaments that they have qualified for they have gone out on means the other three times). This raises an interesting question - as the opposition manager about to play England, should you play for penalies?
In total, England have been involved in seven penalty shoot-outs in competition and have lost six of them So is this 14% success rate statistically significant? How can England improve the odds of success in penalty competitions? Penalties are supposed to be a hit and miss affair - but with a bit of practice and some
mathematical analysis, England may well overcome mathematical andiysis, Es
their penalty-taking curse.

Let's set up a simple scenario when taking a penalty. A striker can shoot either to his/her left or right, and similarly a goalkeeper can dive to his/her left or righ

If the goalie dives to his/her leff and the striker shoots to his/her left OR if the goalie dives righ and the striker shoots right then a goal is scored (assuming the striker is accurate) because
goalie will be diving away from the ball.

- If the goalie dives to his/her left and the striker - shoots to his/her fight (or vice versa) then the goal there is a 50% chance the goalie will save the ball.
- Let's assume that the striker is accurate when shooting left 70
shooting right.

Using mathematics we can estimate the best strategy for the striker to employ - it involves shooting to his/her leff 56% of the time and to the right 44% of the time, irrespective of the goalkeeper's strategy. Overall this
corresponds to scoring around 60% of the time. But corresponas to scoring around why should the striker shoot more to his/ heir. left sut side even though this is less accurate (70\%) than when shooting to the right (90\%)?
Using the same mathematics we can also estimate the Using the same mathematics we can also estimate the
best strategy fort he goalkeeper - it suggests diving to
his/her left 69% and to the right 31% of the time. So if the striker shoots oalkeeper will dive more often to his/her left and increase the chances of saving the shot. However if the striker shoots to the less accurate
left side, the goalie will left side, the goalie will
only dive in this direction only dive in this direction
(to his/her right) around 30% of the time - so the lower shot accuracy is compensated for by the fact the shot is less likely
to be saved because of the to be saved because of the
goalkeeper's strategy. (For a more in-depth perspective on the maths, please see the arricle by John Haigh on Plus magazine website: hitp://
plus.maths.org/issue21/ features/hoigh/index. html)

Of course, penalies ar
blasted into the back blasted into the back of the net or accurately
placed. They placed. They may be in
the top left corner, the top left corner, straight Which
down the middle or in the bottom down the midale or in the bottom
right corner. The goalkeeper may righ corner. Tie not to dive at all or may find
elt that reaching a penalty to the top left is more difficult than reaching a
lat penally aimed to the bottom left. Bu at this stage you simply construct a more realisic moder invoving mot
than just shooting left and right.
So practice is the better alternative, but the maths and statisistics can help analyse performances. In foct, think of all the stats that underline a good performance - not iust penalty Steven Gerrard in a match, the number of tackles by Cesc Fabregas, the pass accuracy of Lionel Messi or the power of a shot by Cris
Ronaldo- it all counts...

The long arm of the law - probably

In 1999, Sally Clark was tried, convicted and sentenced to life imprisonment for the double murder of her two sons who were aged jus deaths.

The tragedy shocked the nation, as the expert testimony of Professor Roy Meadow indicated that the chances of the double deaths happening in the same family from natural causes - Sudden infant Death Syndrome (SIDS) commonly known as cot death - were 1 in 73 million
In other words, so unlikely that Sally Clark must be In other words, so unlikely that Sc
Iguily of the murder of hersons.
However doubtr surfaced about the testimony of the expert witness on the grounds of poor mathematical reasoning. The Clarks had clways protested their
innocence and there was much debate about the innocence and there was much debate about the
testimony the Roval Statistical Society had issued a testimony; the Royal Statistical Society had issued a
press release pointing out the mistake and indeed the conviction was quashed in 2003.

So what happened? If two events are considered to be unconnected they are said to be independent of each other. Professor Meadow made the (invalid) assumption that the two cot deaths were independent. For a non-smoking, affluent family the chance of a cot death occurring is around 1 in 8500 . So to calculate
the probability of two deaths occurring in one family the probability of two deaths occurring in one family a result of 1 in 73 million. He then presented this as the probability that Sally Clark was innocent. This is a case of the Prosecutor's Fallacy. Are you guilty given the evidence or given the evidence are you guily?
However, research suggests that in a family where one happening to another sibling is increased by between 10 to 22 times - this means that two cot deaths are cerrainly not independent. Also consider this, in normal
circumstances the probability of either double SIDS circumstances the probability of either double SIDS or double murder in a single family is very small but,
given that a double death has actually occurred, the given that a double deain has activally occurred, the
chances of it being double SIDS or double murder are more likely.

Are you well?

Probably

Medicines that come to the market have done so on the basis of rigorous testing and statisticians are vital to that role.

Pre-clinical trials produce masses of data that must be carefully analysed to determine safety. Clinical trials involving people can take a number of years and the right dosage o

Subose we under
Suppose we undertake a screening programme to denify a disease and hence administer a cure. The aims are quite reasonable. Now suppose 1% of the group suffer from the disecse and the rest are well but a false result. Using this information can you complete the following probability tree diagram?

By moving along the branches we can calculate the Various probable outcomes and The two 'dorobabilites outcomes are small enough to be considered
acceptable. The probability of being well but having a positive test result is known as a False Positive, and the probability of having the disease but having a negative test result is known as a False Negative.
However, in real life the medication we need to administer is potent and expensive. Consider everyone have the disease? resulf. How many of them aciually have the disease? Using the probabilities given, we 2.96% whereas the probability of having a positive result and having the diseasity is 0.98% - so two-thirds of the people who test positive do not have the disease and do not need the drug administering to
would be considered to be unacceptable.

A similar scenario of false negatives and positives can be applied when looking at errors from biometric readings, for example when logging on to a computer
using fingerprint technology or, more disturbingly at using fingerprint technology or, more disturbingly, at against security databases. False positive readings can lead to a headache for those involved, whilst false negatives could allow real criminals to slip through the net.
The statistics we use offer the chance to refine and improve upon processes that impact on our daily lives in ways we shouldn' 4 take for granted.

