Getting fish from the sea to your stomach is big business: Britain consumes £5.65 billion worth of seafood every year. A consistent member of the country’s top three seafood staples is cod – of all the cod eaten on the planet, a third of it ends up on British plates. However, cod stocks around Britain’s coastlines, particularly in the North Sea, have dwindled in recent decades under the strain of over-fishing.

Strict fishing quotas are now in place to protect the North Sea cod population, with the majority of cod consumed in the UK coming from further afield fisheries like the Barents Sea and the Baltic. However, mathematical modelling suggests that, if global temperatures change in line with current predictions, North Sea cod could face another pressure: the disappearance of a plankton species on which they currently depend.

There is evidence to suggest that a key element in cod population is the abundance of a species of zooplankton called *Calanus finmarchicus*. Just a few millimetres across, and a pillar of marine food chains, it is thought the larvae of cod and other commercially important fish species rely on them for survival to adulthood.

Mathematical modelling by Pierre Helaouët, a marine numerical ecologist at the Sir Alister Hardy Foundation for Ocean Science (SAHFOS), Plymouth, suggests that *Calanus finmarchicus* could move northwards by as much as one degree of latitude per decade of the 21st century. Such a migration could drain the North Sea of a species that commercial fish stocks currently rely on.

To come to that conclusion, the first step was to work out just how much *Calanus finmarchicus* inhabits North Atlantic waters.

Monthly population values for each route are then compiled to give a raw database of species abundance covering an area from 99.5°W to 19.5°E and 29.5°N to 69.5°N. Helaouët used this raw data to compile a grid map of *Calanus finmarchicus* population over that area, with each square measuring 1° by 1°. He populated the grid with the average population per decade from the 1960s to the 1990s and from 2000 to 2005.

A combination of mathematical modelling and future climate projections was then used to forecast future population numbers. However, it is difficult to model abundance directly. Instead, egg production rate is used as it can be studied in a laboratory. If a similar grid map of the rate of egg production agreed with the map produced from the CPR, then Helaouët could use egg production as a proxy for abundance from which to predict what the population grid could look like in future.

The rate at which female *Calanus finmarchicus* produce eggs is dependent upon two key factors: water temperature and food supply. Laboratory experiments, in which...
these two factors were varied, produced
a mathematical equation which quantified
the relationship between them and egg
production. As the food Calanus finmarchicus
consumes is plentiful, its supply was fixed at
its optimal value to produce an equation for
egg production dependent only upon sea
temperature.

Helaouët then took historical sea
temperature data from the Comprehensive
Ocean-Atmosphere Data Set (COADS),
acquired and managed by the National
Oceanographic Data Center (NODC) in
the US. The average temperature for each
decade since 1960, and the half decade
between 2000-2005, were put through the
egg production equation to produce a grid
map with the same dimensions as the CDR
abundance map. There was more than a 70%
agreement between the two maps – a strong
correlation when natural variation is taken
into account.

With the correlation established, Helaouët
used predicted values of future sea
temperatures to model the effect those
changes could have on the North Atlantic
Calanus finmarchicus population. The values
he took were from a model selected by the
Intergovernmental Panel on Climate Change
(IPCC) for its global climate projections and
take into account likely carbon dioxide levels
based on world population predictions up to
the year 2100. This data was used to produce
maps which forecast egg production rates
for the decades 2050-2059 and 2090-2099.

The maps predict a pronounced change
in population: Calanus finmarchicus could
disappear from the North Sea by the end of
the 21st century, moving polewards at a rate
of one degree per decade.

Should such a departure take place, it is
possible that a knock on effect could be seen
in the number of cod and other commercial
fish stocks in the North Sea. What is known
for sure is that there is a link between
Calanus finmarchicus and cod: last time
Calanus finmarchicus numbers collapsed in
the North Sea that had an impact on the fish.
With Helaouët’s model suggesting that, if
global temperatures rise as predicted, it will
become harder and harder for the plankton
to remain in the North Sea, cod numbers
could be hit again. However, what is unknown
is whether cod, or the plankton it relies on,
can adapt to the changes or whether a new
species can exploit the new conditions.

Changes within ecosystems are nothing new
— the natural world is driven by the natural
variability in resources. Yet human activity,
which many believe to be warming our planet,
can accelerate these changes. It remains
to be seen whether the plankton and fish
species that currently support the big money
fishing industry can adapt quickly enough to
the changes. Whichever way it pans out, it is
mathematics that is giving us a head start
when it comes to thinking about the future of
North Sea fishing.

Egg production rate

The equation for egg production rate, which
gives the number of eggs per female Calanus
finmarchicus per day, is a power law with five
unknown parameters. These parameters were
estimated using the technique of non-linear least
square regression.

There was a difficulty in accurately forecasting egg
production rate as both a function of temperature and food supply because there was insufficient
data on the abundance of food — chlorophyll a. Therefore the equation was simplified by setting
the food supply to its optimal value.

A correlation check between these two ways of
assessing egg production rate showed agreement
between 89% and 93% of the time.

Abundance vs egg production

To see the relationship between the two maps, a Pearson coefficient, r, was calculated. For all
marine regions r was found to be 0.71 — a greater
than 70% agreement between the two. For
regions deeper than 50 metres that rose to 0.81.

References

Helaouët, P., Beaugrand, G. (2009). Physiology,
Ecological Niches and Species Distribution. Ecosystems,
12(8), 1235-1245.

Macrophysiology of Calanus finmarchicus in the North

TECHNICAL SUPPLEMENT

The IMA would like to thank Dr. Pierre Helaouët, Sir Alister Hardy Foundation for Ocean Science, for his help in the preparation of this document.