
iruses are responsible for a variety 

of illnesses, ranging from the 

common cold to more serious 

conditions such as AIDS and 

some types of cancer, but their methods of 

infection are always similar. Once a virus 

has entered a host’s body, it hijacks the 

replicating mechanisms within the host’s 

cells and starts pumping out copies of 

itself. Viruses can only do this by concealing 

their genomic material within a protein 

shell, or capsid, which allows them to slip 

inside the host’s body like a Trojan horse. 

These capsid shells often have complex 

symmetrical structures, so mathematicians 

are investigating their shapes in the hope 

of discovering new treatments for viral 

infections.

A virus is essentially just a short string of 

DNA (or RNA, a related molecule) wrapped 

inside a capsid shell, and longer strings of 

genomic material require a larger shell to 

hold them. This creates a problem because 

the genomic material must describe the 

entire virus, including the capsid, and a larger 

shell in turn requires a longer string of DNA 

or RNA. 

Francis Crick and James Watson, the 

biologists who also discovered the structure 

of DNA, suggested in 1956 that symmetrical 

capsids provide a solution as they can be 

constructed from just a few basic building 

blocks. This means the genomic material of 

a symmetrical virus can be much smaller, 

because it simply needs to describe small 

sections of the capsid and instructions for 

repeating them in a symmetrical pattern. 

It was later found that many viruses use 

icosahedral symmetry to compact their 

genome, as their capsids resemble a shape 

made from 20 triangular faces called an 

icosahedron. It can be rotated in 60 different 

ways and still appear to be the same – in 

other words, it has 60 axes of symmetry. 

Although this model works well for small 

viruses with 60 proteins, it cannot explain 

the structures of larger capsids, suggesting 

there is a more intricate pattern at work. 

The biologists Donald Caspar and Aaron 

Klug discovered this pattern in 1962, when 

they realised that dividing the 20 triangles of 

an icosahedron into smaller triangles could 

explain more complicated viruses than Crick 

and Watson’s simple icosahedron model.

The Caspar-Klug model is now the standard 

way of explaining capsid structures, but there 

are still some viruses that don’t quite fit. 

Human papilloma viruses, the major cause of 

cervical cancer and a factor in other cancers, 

have a five-fold or pentagonal structure 

that doesn’t match with traditional ideas 

of symmetry, because a pentagon cannot 

be built from regular triangles. Crick and 

Watson’s theory that  viruses are constructed 

from a few symmetrically-arranged building 

blocks seemingly doesn’t work for papilloma 

viruses, but Reidun Twarock at the University 

of York has found a fix based on decades-old 

pure mathematics. 

In the 1970s, the English mathematical 

physicist Roger Penrose discovered a way of 

combining two four-sided shapes called the 

“kite” and “dart” to produce patterns with 

five-fold symmetry. Unlike regular pentagons, 

these two shapes fit together without leaving 

any gaps. They also differ from squares or 

triangles, because the patterns they produce 

don’t ever repeat themselves. It turns out 

that by using Penrose’s concept in three 

dimensions, Twarock was finally able to 

model the capsid structure of complicated 

viruses like human papilloma.

Many viruses have a symmetrical structure made from 

basic building blocks, and biologists have  struggled 

to explain some of the more detailed shapes. Now, 

mathematicians are using complex theories of symmetry 

to reveal these viral structures, ultimately leading to new 

treatments for diseases.

“Modelling the 

structure of 

viruses could 

have enormous 

ramif ications for 

drug design and 

the development of 

new treatments.”
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Twarock’s work even allows her to peer 

inside the capsid shell and understand how 

it connects to the virus’s genomic material. 

The Caspar-Klug model can only explain the 

capsid’s surface, so biologists currently rely 

on complicated imaging techniques such as 

cryo-electron microscopy to understand 

the structure of the entire virus. Now, 

Twarock has been able to accurately predict 

characteristic features of a virus’s internal 

structure, and has found  links between the 

external shape of the protein container and 

the organisation of the viral genome inside.

Modelling virus structures in this way could 

have enormous ramifications for drug design 

and the development of new treatments. 

Biologists know that some viruses change 

their shape when infecting a host cell, 

rearranging their capsid shells in order to 

release their genomic material, but exactly 

how this transition occurs is unclear. By 

classifying the possible shapes that a virus can 

take, Twarock hopes to model the various 

stages a virus goes through as it changes 

and work out which shapes are most likely 

to occur. This will ultimately help develop 

methods that inhibit these structural changes 

and prevent viral infection.

Her mathematical research could also 

help turn the tables on viruses, hijacking 

their capsid shells for  use in drug delivery. 

Researchers working in this area currently 

select viruses based on the host cells that 

they target, then replace the viral genomic 

material with an alternative, beneficial 

sequence. Twarock’s insight could help them 

choose viruses based on the properties of a 

particular capsid shape, allowing for better-

targeted treatments.

In addition to the medical benefits, Twarock 

could also help settle a biological argument 

about the origin of viruses. Many viruses 

share similar shapes despite having very 

different genetic sequences, a puzzle that 

biologists have yet to solve. Some suggest 

these similar viruses must have evolved from 

a distant common ancestor, but others argue 

that genetic differences make this impossible. 

Twarock’s work indicates that these shapes 

could result from mathematical limitations, 

and that different viruses have similar 

structures because there are only so many 

that are actually possible.

A typical virus is 10,000 times smaller than 

a grain of sand, but their structures are so 

intricate that the simple biological models 

developed by Crick and Watson and then 

Caspar and Klug were not able to fully 

capture the details. It has taken Twarock’s 

advanced pure mathematics to make sense 

of them, allowing biologists to study viruses 

in greater detail than ever before. The more 

we understand about virus shapes, the better 

equipped we are to fight their infections, so 

studying their symmetry will ultimately help 

save lives.

Icosahedral symmetry

The icosahedron is one of the five Platonic solids, 

the only shapes that can be constructed from 

identical polygonal faces, and its many symmetries 

have been well studied by mathematicians. It is said 

to have 5:3:2 symmetry, as there are six 5-fold 

axes of symmetry, ten 3-fold axes of symmetry 

and fifteen 2-fold axes of symmetry. This structure 

allowed Crick and Watson to identify the placement 

of various proteins on a virus’s capsid shell for some 

small viruses.

Their model predicts that any protein not sitting on 

an axes of symmetry must appear in multiples of 

60, but symmetry cannot account for the placement 

of more than 60 proteins, and further conditions 

are needed to pinpoint exactly where all proteins 

are located. Caspar and Klug partially solved this 

problem by overlaying an additional triangular lattice 

on to the icosahedral model, and Twarock takes 

this further with a quasilattice derived from Penrose 

tiles.

Penrose tiles

There are only three regular polygons that tile the 

plane: squares, triangles, and hexagons. These 

three shapes fit together in regular grids that 

exhibit rotational, reflectional and translational 

symmetry, but they are not the only tilings possible. 

Roger Penrose’s irregular kite and dart shapes 

also tile the plane, displaying both reflectional and 

5-fold rotational symmetry, but not translational 

symmetry. In other words, Penrose tilings are 

aperiodic and never repeat themselves.

Penrose was not the originator of aperiodic tiling, 

but he was the first to show it could be done with 

just two shapes. Although Penrose tiles were 

originally the result of mathematical curiosity, 

they found an application in the mid 1980s with 

the discovery of quasicrystals, an unusual atomic 

structure found in some metallic alloys that could 

only be explained by Penrose’s work. Now, 

Twarock’s research shows that Penrose tilings can 

also be applied to the structure of viruses.
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