
ork is under way on the largest 

engineering project in Europe: 

Crossrail. The project will 

connect 37 railway stations 

spanning the entire width of London. With 

the first sections planned to open in 2018, it 

is estimated that the service will ferry 200 

million passengers across the capital every 

year.  Current estimates place the economic 

benefit of Crossrail at £42 billion.

One of the largest of the new stations will 

be at Canary Wharf. Designed and built by 

Canary Wharf Group, the Station will be 

a large hub for London’s city workers and 

residents. Above the Station will be 100,000 

square feet of retail space and a new park 

covered by a spectacular timber lattice-

roof. In designing such a busy station, retail 

and leisure space, it is important to ensure 

the passengers are comfortable. The way 

the station is constructed has an effect on 

whether the station is stagnant, windy, hot 

or cold. It is key, then, to ensure the design 

of the station is right before starting on its 

multi-million pound construction. This is 

where mathematics can help.

As with the existing Tube station at Canary 

Wharf, the Crossrail station is being built in 

a dock and a balcony will overlook the water. 

Underneath the balcony are large extractor 

fans that are necessary to remove the heat 

generated by the trains in the tunnels below. 

The air flowing from these fans can reach 

60ºC. It is therefore important to make sure 

that this hot air is not flowing back into the 

station where it would raise the temperature 

within. Engineering and design firm Arup have 

used mathematics to check and modify the 

design of the station to help direct this flow 

of hot air.

First the engineers need to determine 

the temperatures of the surfaces (walls, 

floors and ceilings) of the station – known 

as boundary conditions. These boundary 

conditions are dependent on factors such as 

the original temperature of the air outside 

and inside the station, the heat from people, 

the weather and trains. Equations governing 

these temperatures can be run through a 

computer to see what the conditions will 

be after a small amount of time (called a 

time-step). This process is repeated to 

model the conditions over any given time. A 

dynamic thermal model is used that is solved 

numerically using what is known as a forward 

finite difference method.

In the dynamic thermal model, the heat 

conduction occurring in the station walls, 

floor and ceiling is visualised as a series of 

resistors and capacitors – elements that 

can resist and store heat respectively. Large 

concrete sections are prime examples of 

capacitors because they can store the heat, 

before releasing it later in the day. The model 

is run over consecutive ten 

minute intervals to see how 

changes in overall temperature 

in the station and those of the 

station surfaces unfold over 

time. Several iterations are run 

as the boundary conditions 

are dependent on the time of year – they will 

be different between winter and summer, for 

example. 

Once the temperatures of the surfaces are 

known, a detailed model is needed to show 

how the hot air entering the station interacts 

with the station surfaces and environment. 

For example, whether the heat is dissipated 

quickly having little overall effect, or 

whether it stays around potentially causing 

an unacceptable rise in overall temperature. 

The flow of fluids in this way is described 

by a set of equations called the Navier-

Stokes equations, named jointly after the 

mathematicians who came up with them 

independently in early 19th century. 

There is, however, a catch: fluids are made 

up of countless particles all moving together 

in three dimensions. This complexity renders 

the equations almost impossible to solve 

directly. In fact, the problem forms one of 

the Clay Mathematics Institute’s Millennium 

Maths Problems, with $1 million offered for 

a solution. Faced with such a difficult task, 

engineers, mathematicians and physicists 

have to break the problem down into chunks 

that can be churned through large computer 

clusters to give an approximate solution. This 

type of model is a form of computational fluid 

dynamics.

If it turns out that the hot air from the 

ventilation fans is providing an unacceptably 

With a billion journeys taken on UK 
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to design the next generation of 

railway stations, ensuring they provide 

a comfortable environment for the 

travelling customer.
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high contribution to the station temperature 

then the design can be adjusted to reduce 

the flow into the station. The same 

mathematical techniques are used by Arup 

and other companies in the effective design 

of offices, sports stadiums, schools and 

hospitals. In this way mathematics is not only 

helping to keep commuters comfortable 

on their journeys but plays a part in the 

infrastructure we all encounter on a daily 

basis.

TECHNICAL SUPPLEMENT

Forward Finite Difference Method

Differential equations are difficult to solve 

analytically. Finite difference methods are used 

to approximate the first order derivative of a 

function, meaning differential equations can be 

represented by a set of linear equations that are 

approximately the same. These equations are then 

much easier to solve. The approximation is based 

on sampling the values of the function around the 

desired point. In forward finite difference methods 

the sample value has a later value than the point 

for which the equation is being solved.

Navier-Stokes Equations

The Navier-Stokes equations were first derived by 

the French physicist Claude-Louis Navier in 1822, 

but later developed independently by the British 

mathematician George Stokes in 1845, who wrote 

the equations in the form still used today. The 

equations are derived from Newton’s second law 

of motion (force equals mass times acceleration) 

and describe the relationship between the 

velocity, pressure, viscosity and density of a 

moving fluid. As a linked set of four non-linear 

partial differential equations, the Navier-Stokes 

equations are impossible to solve analytically in 

almost all cases, hence the need for numerical 

approximation methods. 
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