
here are more active mobile 
phones in the UK than people: 
over 70 million at the last count, 
thanks to multiple handset or SIM 

card ownership. What most don’t realise is 
that the mobile communications industry 
is only made possible by the mathematical 
study of signal processing, which allows us 
to extract useful information from the noisy, 
invisible sea of radio signals above our heads. 
The rise of smartphones and mobile internet 
will introduce new challenges to the mobile 
networks, but cutting-edge mathematics is 
set to provide cheaper, more energy efficient 
and better quality communications for all.

Mobile phones transmit signals to a nearby 
base station via radio waves, a small part 
of the electromagnetic spectrum that also 
includes visible light, microwaves, and X-rays. 
Waves in the spectrum are described by 
their frequency, the number of oscillations 
per second, and two mobiles attempting 
to communicate with a base station using 
the same frequency will interfere with each 
other. This places a fundamental physical limit 
on how many mobile users can squeeze into 
the available frequency bands, making the 
spectrum a scarce natural resource that must 
be regulated by the Government to ensure it 
is used fairly. 

The spectrum is also an incredibly 
valuable resource, as demonstrated by the 
Government’s £22.5 billion auction of the 
3G frequency band in 2000. Just as tangible 
resources such as gold or oil become more 
expensive when demand rises, so too will 
demand for mobile communications increase 

the spectrum’s value, but unlike these other 
resources the spectrum can be used more 
efficiently with the help of mathematical 
research. 

Mobile networks, like all forms of 
communication, are underpinned by a branch 
of mathematics called information theory. 
It was founded in the late 1940s by the 
American mathematician Claude Shannon, 
who realised there is an upper limit on the 
amount of information that you can send 
over a communications channel, such as a 
radio frequency band, before errors start 
to creep in. Reaching this “Shannon limit” 
requires a mathematical description of the 
message called an error-correcting code, but 
for decades the best codes could only achieve 
around half-capacity.  It wasn’t until the 1990s 
that researchers came close to unlocking the 
full potential of communications channels, 
with a new method called turbo codes.

Now, mathematicians in the UK are 
developing methods for even better 

communications. Although turbocodes help 
to get the most out of a communications 
channel, there are also factors in the physical 
world that affect channel performance. 
Signals in a complex urban environment 
scatter when they bounce off buildings, 
causing echoes that take longer to reach 
their destination. These delayed echoes can 
interfere and cancel out when they meet 
again at the receiver, leading to dead zones 
and dropped phone calls. But rather than 
viewing this as a problem, engineers and 
mathematicians such as John McWhirter at 
Cardiff University have figured out ways to 
make these multiple-path effects actually 
improve signal transmission. 

These improvements exploit an important 
new development in broadcasting 
technology called MIMO, or “multiple-
input and multiple-output”. MIMO uses 
arrays of “smart” radio antennas in both 
the transmitter and receiver, combined 
with software that tunes in on the direction 
in which a signal is strongest. The process 
is similar to tuning an FM radio into your 
favourite station, but rather than twiddling 
the radio dial, a mathematical algorithm 
rapidly tries different array configurations 
until it finds the best signal.  Currently used 
algorithms are inefficient because they can’t 
solve the problem without an intermediate 
stage, but in recent years McWhirter and his 
colleagues have developed methods to tackle 
it directly.

The amount of information we can transmit though the air 

is limited by the laws of physics, but the mathematics of 

signal processing lets us squeeze more data into the same 

amount of space. As a result, we get better, cheaper and 

faster mobile phone calls.

“It’s like f inding 
a mathematical 

equation for turning 
thin air into gold.”
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Transmitting a signal with a MIMO system 
is a problem in linear algebra, a branch of 
mathematics involving grids called matrices. 
The matrix in a MIMO system describes how 
a signal is transformed during transmission 
due to noise and other errors, and recovering 
the original transmitted signal from the 
altered received signal means undoing these 
changes. In mathematical terms, this is called 
“inverting the matrix”. It’s easy to invert 
simple matrices because they are just grids of 
numbers, but the matrices describing a MIMO 
system are anything but simple. 

Due to the time-delays introduced by 
multiple-path effects, MIMO matrices aren’t 
just grids of numbers, but actually contain 
a long mathematical expression called a 
“polynomial” in each cell. These are the best 
way to describe the complicated interactions 
of multiple-path MIMO signals, so finding an 
algorithm to invert them is a top priority. 
The current solution converts the polynomial 
matrix into a series of simple grids that can 

more easily be inverted, but this comes at 
a price because it can use up more of the 
precious spectrum.

McWhirter hopes that removing this extra 
step will allow a more efficient use of the 
available spectrum. His new algorithms 
for inverting polynomial matrices directly 
could enable more mobile phone users to 
make better quality calls while also using 
less energy, an important goal when levels 
of mobile communication are constantly 
increasing. In terms of exploiting natural 
resources, it’s like finding a mathematical 
equation for turning thin air into gold. 

With smartphones and mobile internet 
changing the way we talk and access 
information, the future of mobile 
communications promises to be exciting, 
but fast, low-power and high-quality 
connections won’t be enabled by technology 
alone. Mathematicians will help network 
operators make these changes by packing 

more information into the limited spectrum 
with techniques such as turbo codes and 
polynomial matrix inversion, thus enabling the 
industry to continue meeting the insatiable 
demand for communication on the go.

error-correcting and turbo codes

In 1948, Claude Shannon showed that it is always 
possible to send error-free information over a 
noisy communications channel, provided you use 
a code with some redundancy. A basic code might 
simply repeat each section of the message three 
times; e.g. the string 101 would be transmitted as 
101101101. If the person on the other end receives 
101111101 instead, they know something has gone 
wrong but can still extract the correct string.

This simple code is not very good, however. The 
repetition makes transmitting a message take three 
times longer, and multiple errors render it useless 
– does 111111101 correspond to 111 with one 
error or 101 with two? Shannon proved that much 
more efficient codes existed that would enable the 
maximum rate of data transmission (the “Shannon 
limit”), but for decades even the best codes could 
only send little more than 1 kilobyte per second.

The breakthrough came in 1993, when Claude 
Berrou, Alain Glavieux and Punya Thitimajshima 
announced a new type of code that came very 
close to the Shannon limit. Nicknamed turbo 
codes, they use pairs of encoders and decoders 
to boost transmission speeds. The two encoders 
transmit different versions of the same message 
and the two decoders make statistical guesses 
about the bits in each versions. Both decoders rate 
how confident they are that a particular bit is a 0 or 
a 1 and compare their answers. After a number of 
iterations, the two decoders agree and the original 
message is recovered.

Polynomial matrix inversion in 
MIMO systems

The transmitted and received signals in a MIMO 
system are represented by two different vectors, 
with each number in the vector corresponding 
to one of the many receivers or transmitters in 
the system, and the channel is represented by a 
matrix describing ho w the signal changes during 
transmission. 

It’s easy to find the received signal vector by 
multiplying the transmitted signal vector and the 
channel matrix together, but the problem mobile 
phones need to solve is the exact opposite: 
working out the unknown transmitted vector 
from the received vector and the channel matrix. 
This involves inverting the channel matrix; a more 
difficult problem than multiplication, but one that is 
easily solved for simple matrices. 

Polynomial matrices are currently inverted by first 
reducing them to a set of simple scalar matrices 
using a technique called orthogonal frequency-
division multiplexing (OFDM), then inverting 
these scalar matrices with traditional algorithms. 
Each scalar matrix corresponds to a particular 
set of frequencies within the frequency range of 
the communication channel, but separating the 
frequencies in this way results in a loss of degrees 
of freedom and a less efficient use of the spectrum.
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