
n 2003 the Human Genome Project 
published the first complete version 
of our genetic code, opening the 
doors to a new revolution in medicine. 

Understanding how certain genes are linked 
to cancer, diabetes or many other diseases 
offers the hope of new cures and treatments, 
but there is still much more research to be 
done, and all of this work is heavily reliant on 
statistics and computing. Sequencing the 3.2 
billion letters of the human genome took 13 
years, but this was actually two years ahead 
of schedule, thanks in part to advances in 
statistical and computing techniques. Now, 
as biological experiments produce larger 
and larger amounts of genetic data, the role 
of statisticians in genomics is increasingly 
important.

Much of this data is now gathered from 
genome-wide association studies, which 
take DNA samples from individuals with and 
without a certain disease and identify the 
differences in their genomes. The genetic 
code of individuals within both sets is 
compared, and if individuals with the disease 
have particular features that differ from those 
without the disease, there is potentially a link 
between those regions and the disease.

These features can be identified using 
microarrays, which contain millions of DNA 
probes on a single slide no larger than a 
postal stamp. Such arrays are used to identify 
features in large numbers of DNA samples, 
generating masses of raw data that must be 
cleaned up with statistical techniques before 
it can be used. The result is a read-out of the 
genetic differences, along with an assessment 

of the accuracy of the data. Microarray 
technology has evolved at an incredibly fast 
pace, with new arrays entering the market 
every few months in an attempt to bring down 
the cost of individual readings, and every time 
the technology is revised, these statistical 
techniques also have to be re-engineered.

Once the data has been collected and 
cleaned up, further statistical techniques 
are used to draw conclusions, but this is 
not simply “finding the gene for x” as it is 
often presented in the media. The simplest 
variations within the genetic code are called 
single-nucleotide polymorphisms (SNPs), 
positions in the DNA that differ from person 
to person. Statisticians use a method known 
as regression in order to determine whether 
a SNP is linked to a particular disease but 

traditional methods of regression are not up 
to the task, so researchers such as Simon 
Tavaré at the University of Cambridge have 
developed more advanced statistical tools. 
Tavaré and colleagues have come up with 
a regression technique known as sparse 
partitioning that efficiently identifies the 
important SNP positions and the interactions 
between them.

Finding these genetic differences enables 
the development of genetic tests to identify 
individuals who are at risk from certain 
diseases, helping them to get treatment 
faster. Such tests already exist for a range 
of diseases, including Alzheimer’s and some 
forms of cancer, and more are currently being 
developed.

Looking ahead, one objective is to provide 
personalised medicine to patients, so that 
they receive optimised treatments according 
to their genetic profiles. For example, it is 
thought that half of women with breast cancer 
are given unnecessary treatment that won’t 
help to cure their disease, simply because 
it is not currently possible to identify which 
individuals will respond positively to particular 
treatments.

In order to achieve this, it is important that 
biologists work with statisticians to ensure 
clinical trials are conducted in the best 

Sequencing the human genome was a fantastic 

achievement, but it was only the beginning. Now, 

statisticians are coming up with new methods to sift 

through large amounts of a genetic data and identify 

the differences in DNA that can lead to diseases.
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possible way. Clinical trials are often run by 
dividing patients into two groups: one group 
gets a placebo while the other does not. In a 
more complicated trial, each group might be 
switched to the other treatment in a second 
round, so each patient receives one active 
treatment and one placebo throughout the 
course of the trial. Doctors then identify the 
effects of the treatment by comparing each 
individual’s change in response.

One problem with this method, identified by 
Stephen Senn at the University of Glasgow, is 
that patients might not respond consistently 
to treatment. For example, in a trial with 100 
patients, 70 might respond to treatment while 
30 do not. The common interpretation says 
that the treatment always works for 70% of 
patients and never works for the other 30%. 
An equally statistically valid interpretation is 
that the treatment works for all patients, but 
only 70% of the time.

Determining which interpretation is true 
is vital if we are to develop personalised 
medicine, because genetic differences are 

only a factor in the first case. Solving this issue 
requires trials in which patients repeatedly 
switch between treatment and placebo, so 
that more detailed comparisons can be made 
using a technique known as random effects 
modelling. This separates out the variability of 
a trial into different sources, such as natural 
variation between patients or even between 
the same patient at different points in time, 
allowing statisticians to pin down a patient’s 
individual response.

What ever the future holds, it is clear 
that sequencing the human genome was a 
fantastic scientific achievement made possible 
by advanced statistical work. It unlocked 
the tantalising possibility of personalised 
medicine, but much more work is needed 
for this to be realised. As DNA sequencing 
and related technologies develop over the 
next few years, the amount of data produced 
is expected to increase one hundredfold or 
more. Sorting through this data is an immense 
task, so biologists and statisticians will need 
to continue working closely together.

Sparse partitioning regression

Statisticians have used different forms of regression 
for over 200 years. The earliest methods only work 
for a small handful of data, but modern techniques 
are far more powerful and are constantly being 
improved. Simon Tavaré’s latest method, known as 
sparse partitioning, can handle large datasets with 
interacting variables, making it useful for analysing 
whole genome association studies.

For example, an association study for a particular 
disease involves looking through the genetic data 
to find correlations. If people with the disease 
all show one SNP variety at a particular point in 
the genome, and people without have the other 
SNP variety, there is likely an association between 
the genome position and the disease. In practice 
the pattern won’t be so clear cut, so regression 
is needed to seek out the truly influential SNP 
positions.

Since the large majority of SNP positions on the 
genome won’t be relevant to the particular disease 
being studied, there is a very small probability 
that any particular position chosen at random will 
be of interest. Tavaré and colleagues have taken 
advantage of this fact to identify the important 
interacting SNP positions.

The new technique is also more flexible than 
previous ones. Many traditional regression 
methods are additive, meaning that the effects of 
individual SNP mutations are just stacked together, 
ignoring the possibility that the effect of one 
mutation might influence the effect of another. 
Other methods that do allow interactions must 
also place restrictions on the dataset, some of 
which may not be suitable in all situations. Tavaré’s 
method seeks to do away with these restrictions by 
partitioning mutations into interacting groups, then 
using Bayesian methods to identify those groups 
with the greatest influence in predicting disease.
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