
n the information age the computer

chip is key — the average person will

probably utilise the power of many

integrated circuits several times before

they even leave the house each day. With

worldwide demand for their wares, the work

of computer chip designers is big business.

But, with the cost of making the first

prototype of a chip running into the millions,

getting it wrong can be an expensive mistake.

Ultimately, chips are fabricated using a

collection of photolithographic “masks”,

which define the various microscopic

structures to be laid out on the silicon chip.

The cost of each set of masks can run to

millions of dollars. And, if an error in logical

functioning is discovered in a fabricated chip,

tracking down the cause — a process known

as “post-silicon debugging” — is very difficult.

To have the best chance of getting it right

first time, extensive computer simulation is

used to check the circuit design before it is

converted to masks and fabricated. Up to

half of the time spent designing a new chip is

dedicated to checking it will work properly.

Such is the complexity of these chips that

it’s not even remotely feasible to simulate all

their possible operations and configurations.

A chip stores data as a collection of zeroes

and ones and the “state” of the chip describes

the overall configuration of these zeroes

and ones at any one point. The number

of different states a chip could be in vastly

exceeds the number of atoms in the universe.

Checking them all would take an unimaginably

long time. Nonetheless, extensive simulation,

with sophisticated strategies to ensure good

coverage of the design, is the mainstay of

design validation and debugging.

Designers have to box clever, and are

increasingly turning to mathematical

reasoning to verify key functionalities of the

chip. By modelling the design mathematically,

large collections of its operating states can

be expressed compactly by mathematical

formulae. Mathematical proofs can then

be used to analyse their correctness. Tom

Melham, Professor of Computer Science at

the University of Oxford, and a long-time

research collaborator with chip manufacturer

Intel Corporation, works in this mathematical

field of “formal verification”.

The mathematical attack has its limitations

too though: the proofs involved are

themselves very large. They are practical only

with the aid of highly sophisticated algorithms

for computer “theorem proving”. Unable

to reason about the entire chip, verification

engineers are reduced to analysing as much of

its functionality as they can.

One method, known as “bounded model

checking”, sees the functionality of the chip

checked only up to a limited number of

cycles of operation. Each time the zeroes

and ones are re-written, a cycle of operation

is complete and the state of the chip alters.

Although this method will miss any error that

manifests itself after this limit, it can still often

cover much more of the chip’s functionality

and so provides a valuable net to trap

potential design bugs.

In bounded model checking, the sequence

of states through which the chip has passed

up to the chosen bound is represented

by a formula. The variables in the formula

represent a numeric code for the individual

states the device has been in. A second

formula is created which describes an

error in one or more of these states. The

conjunction of these two formulae describes

a fault happening at any point up to the

boundary. If there is any combination of

values that variables can take on that make

this combined formula hold true, a bug has

The modern world is built on computer

chips. From laptops to mobile phones, cars

to TV sets, the integrated electronics in these

devices power our day-to-day existence.

In order to make sure their chips will work

properly before they go to market, designers

are increasingly turning to mathematics.

“To ensure the best

chance of getting

it right f irst time,

mathematics is

used to verify the

logical design of

the chip before it is

constructed.”

Predicting Performance: Mathematical Verification of Chips

MATHEMATICS

MATTERS

I

occurred and the chip design is faulty. The

exact value of these variables identifies the

state in which the bug has happened.

Highly sophisticated computer algorithms

called satisfiability solvers (“SAT solvers”)

are used to check properties like this.

Theoretical analysis shows that SAT belongs

to a class of problems for which there is no

known fast algorithm. Indeed, determining

whether or not it is possible to solve these

problems efficiently is one of the major

open problems of Computer Science today.

Nonetheless, there has been spectacular

progress over the past decade in designing

SAT solving programs that work remarkably

well on real-life problems.

Complementary to these sophisticated

algorithms is the mathematical technique

of “abstraction”. Rather than modelling the

whole problem, computer scientists like

Professor Melham abstract out only the most

important features of the chip — the ones

most key to demonstrating its successful

operation. These abstract models can be

much more tractable for

mathematical proofs than

the whole design.

The challenge with

abstraction comes in

deciding just how far

to abstract — if you go

too far then your model

isn’t a sufficiently precise

representation of what

the chip is doing. This

could lead to a bug being

missed, with all the

expensive ramifications

that brings. But not

abstracting enough leaves a model that’s too

large and complex to analyse mathematically.

One of the leading methods for creating a

good abstraction is to deliberately abstract

quite a long way and then gradually hone in

by checking if any bugs that are flagged up are

real or just ghosts of the abstraction process.

Eventually the abstraction converges to a

level that is a good representation of the chip

but which doesn’t need too much computing

time.

Computer chips are everywhere and

becoming increasingly complex. With

mathematics, manufacturers can verify

their chips, so that the ever-growing legion

of electronic devices — fast becoming

ubiquitous in modern life — can continue to

push technological boundaries.

Boolean algebra and SAT solvers

The logical formulae used in formal verification

are commonly expressed with the operators of

Boolean algebra, devised by English mathematician

George Boole in 1847. Boolean algebra is the

algebra of “truth-values”, TRUE and FALSE, often

written as 1 and 0. In the usual formulation, the

operations are binary conjunction (“˄”) and

disjunction (“˅”) together with negation (“¬”) and

the constants 0 and 1. Indeterminate truth-values

are named by variables. So, for example, “x ˄ (y

˅ ¬z)” means “x, and y or not z”. As the American

mathematician Claude Shannon observed in the

1930s, these operations provide an algebraic

basis for design and analysis of digital circuits –

providing the fundamental mathematics behind

the huge industry of digital chip design that we

have today.

In formal verification, a range of sophisticated

computer data structures and algorithms

are employed to analyse Boolean formulae

representing circuits. One extremely important

class of algorithm is “SAT solvers”. A Boolean

formula is “satisfiable” if there is an assignment of

truth-values to its variables that make it hold; an

algorithm that solves the “SAT problem” is one

that, given any Boolean formula F, can determine

if F is satisfiable or not. (In practice, most

algorithms deliver an actual satisfying assignment

of values to the variables if the formula is indeed

satisfiable.) SAT was the first problem

to be shown to be “NP-complete”, which implies

that there is no known algorithm that efficiently

determines satisfiability of every possible Boolean

formula. Among the most famous and important

unsolved problems of Theoretical Computer

Science is the “P versus NP” question, which asks

whether every problem (such as SAT) whose

solutions can efficiently be verified to be solutions

can also be solved efficiently. A definite answer

either way would have profound and far-reaching

practical consequences — not least to modern

microelectronics design.

Although theoretical analysis suggests that SAT is

in principle intractable, in practice modern SAT

solvers are remarkably effective on the types of

satisfiability problems that arise in actual practice

in formal verification. Most of these procedures

have their roots in the “DPLL” algorithm for

Boolean satisfiability, introduced in 1962 by

mathematicians and computer scientists Martin

Davis, Hilary Putnam, George Logemann and

Donald W. Loveland. Supplied with heuristics

honed over years of intense competition between

research groups, today’s highly engineered DPLL

procedures can tackle huge formulas with millions

of variables. Already the cornerstone of formal

verification for chip design, modern SAT solvers

have immense promise as practical algorithmic

tools in many other areas.

Abstraction

Abstraction is the act of isolating for separate

consideration the important aspects or properties

of a complex object, and ignoring the remaining

ones as being irrelevant to the task in hand. A

fundamental technique for controlling complexity,

abstraction of various kinds is ubiquitous in

computer science. The type of abstraction

most used in formal verification is framed

mathematically as a “Galois connection”, a specific

type of correspondence between two partially

ordered sets. Here, the partial ordering is the

relationship of satisfaction between formal circuit

models and the correctness properties we wish

to show they have. Framing abstractions in this

way allows computer scientists to characterize

precisely the conditions under which properties

obtained on abstracted models are still valid for

the more complex models they come from.

References

Armin Biere, Marijn Heule, Hans van Maaren, Toby

Walsh (Editors), Handbook of Satisfiability. Frontiers in

Artificial Intelligence and Applications, vol. 185 (IOS

Press, 2009).

Edmund Clarke, Armin Biere, Richard Raimi and Yunshan

Zhu, “Bounded Model Checking Using Satisfiability

Solving”, Formal Methods in System Design, vol. 19, no. 1

(July 2001), pp. 7–34.

Orna Grumberg, “Abstraction and Refinement in Model

Checking”, Proceedings of the 4th international conference

on Formal Methods for Components and Objects, edited

by Frank S. de Boer, et al. (Springer-Verlag, 2006), pp.

219–242.

TECHNICAL SUPPLEMENT

The IMA would like to thank Professor Tom Melham, University of Oxford, for his help in the preparation of this document.

