
n the information age the computer 

chip is key — the average person will 

probably utilise the power of many 

integrated circuits several times before 

they even leave the house each day. With 

worldwide demand for their wares, the work 

of computer chip designers is big business. 

But, with the cost of making the first 

prototype of a chip running into the millions, 

getting it wrong can be an expensive mistake.

Ultimately, chips are fabricated using a 

collection of photolithographic “masks”, 

which define the various microscopic 

structures to be laid out on the silicon chip. 

The cost of each set of masks can run to 

millions of dollars. And, if an error in logical 

functioning is discovered in a fabricated chip, 

tracking down the cause — a process known 

as “post-silicon debugging” — is very difficult. 

To have the best chance of getting it right 

first time, extensive computer simulation is 

used to check the circuit design before it is 

converted to masks and fabricated. Up to 

half of the time spent designing a new chip is 

dedicated to checking it will work properly.

Such is the complexity of these chips that 

it’s not even remotely feasible to simulate all 

their possible operations and configurations. 

A chip stores data as a collection of zeroes 

and ones and the “state” of the chip describes 

the overall configuration of these zeroes 

and ones at any one point. The number 

of different states a chip could be in vastly 

exceeds the number of atoms in the universe. 

Checking them all would take an unimaginably 

long time. Nonetheless, extensive simulation, 

with sophisticated strategies to ensure good 

coverage of the design, is the mainstay of 

design validation and debugging. 

Designers have to box clever, and are 

increasingly turning to mathematical 

reasoning to verify key functionalities of the 

chip. By modelling the design mathematically, 

large collections of its operating states can 

be expressed compactly by mathematical 

formulae. Mathematical proofs can then 

be used to analyse their correctness. Tom 

Melham, Professor of Computer Science at 

the University of Oxford, and a long-time 

research collaborator with chip manufacturer 

Intel Corporation, works in this mathematical 

field of “formal verification”. 

The mathematical attack has its limitations 

too though: the proofs involved are 

themselves very large. They are practical only 

with the aid of highly sophisticated algorithms 

for computer “theorem proving”. Unable 

to reason about the entire chip, verification 

engineers are reduced to analysing as much of 

its functionality as they can. 

One method, known as “bounded model 

checking”, sees the functionality of the chip 

checked only up to a limited number of 

cycles of operation. Each time the zeroes 

and ones are re-written, a cycle of operation 

is complete and the state of the chip alters. 

Although this method will miss any error that 

manifests itself after this limit, it can still often 

cover much more of the chip’s functionality 

and so provides a valuable net to trap 

potential design bugs. 

In bounded model checking, the sequence 

of states through which the chip has passed 

up to the chosen bound is represented 

by a formula. The variables in the formula 

represent a numeric code for the individual 

states the device has been in. A second 

formula is created which describes an 

error in one or more of these states. The 

conjunction of these two formulae describes 

a fault happening at any point up to the 

boundary. If there is any combination of 

values that variables can take on that make 

this combined formula hold true, a bug has 
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occurred and the chip design is faulty. The 

exact value of these variables identifies the 

state in which the bug has happened. 

Highly sophisticated computer algorithms 

called satisfiability solvers (“SAT solvers”) 

are used to check properties like this.  

Theoretical analysis shows that SAT belongs 

to a class of problems for which there is no 

known fast algorithm. Indeed, determining 

whether or not it is possible to solve these 

problems efficiently is one of the major 

open problems of Computer Science today. 

Nonetheless, there has been spectacular 

progress over the past decade in designing 

SAT solving programs that work remarkably 

well on real-life problems.

Complementary to these sophisticated 

algorithms is the mathematical technique 

of “abstraction”. Rather than modelling the 

whole problem, computer scientists like 

Professor Melham abstract out only the most 

important features of the chip — the ones 

most key to demonstrating its successful 

operation. These abstract models can be 

much more tractable for 

mathematical proofs than 

the whole design.

The challenge with 

abstraction comes in 

deciding just how far 

to abstract — if you go 

too far then your model 

isn’t a sufficiently precise 

representation of what 

the chip is doing. This 

could lead to a bug being 

missed, with all the 

expensive ramifications 

that brings. But not 

abstracting enough leaves a model that’s too 

large and complex to analyse mathematically. 

One of the leading methods for creating a 

good abstraction is to deliberately abstract 

quite a long way and then gradually hone in 

by checking if any bugs that are flagged up are 

real or just ghosts of the abstraction process. 

Eventually the abstraction converges to a 

level that is a good representation of the chip 

but which doesn’t need too much computing 

time.

Computer chips are everywhere and 

becoming increasingly complex. With 

mathematics, manufacturers can verify 

their chips, so that the ever-growing legion 

of electronic devices — fast becoming 

ubiquitous in modern life — can continue to 

push technological boundaries.

Boolean algebra and SAT solvers 

The logical formulae used in formal verification 

are commonly expressed with the operators of 

Boolean algebra, devised by English mathematician 

George Boole in 1847. Boolean algebra is the 

algebra of “truth-values”, TRUE and FALSE, often 

written as 1 and 0. In the usual formulation, the 

operations are binary conjunction (“˄”) and 

disjunction (“˅”) together with negation (“¬”) and 

the constants 0 and 1.  Indeterminate truth-values 

are named by variables.  So, for example, “x ˄ (y 

˅ ¬z)” means “x, and y or not z”. As the American 

mathematician Claude Shannon observed in the 

1930s, these operations provide an algebraic 

basis for design and analysis of digital circuits – 

providing the fundamental mathematics behind 

the huge industry of digital chip design that we 

have today.

In formal verification, a range of sophisticated 

computer data structures and algorithms 

are employed to analyse Boolean formulae 

representing circuits.  One extremely important 

class of algorithm is “SAT solvers”.  A Boolean 

formula is “satisfiable” if there is an assignment of 

truth-values to its variables that make it hold; an 

algorithm that solves the “SAT problem” is one 

that, given any Boolean formula F, can determine 

if F is satisfiable or not.  (In practice, most 

algorithms deliver an actual satisfying assignment 

of values to the variables if the formula is indeed 

satisfiable.)  SAT was the first problem 

 

to be shown to be “NP-complete”, which implies 

that there is no known algorithm that efficiently 

determines satisfiability of every possible Boolean 

formula.  Among the most famous and important 

unsolved problems of Theoretical Computer 

Science is the “P versus NP” question, which asks 

whether every problem (such as SAT) whose 

solutions can efficiently be verified to be solutions 

can also be solved efficiently.  A definite answer 

either way would have profound and far-reaching 

practical consequences — not least to modern 

microelectronics design. 

Although theoretical analysis suggests that SAT is 

in principle intractable, in practice modern SAT 

solvers are remarkably effective on the types of 

satisfiability problems that arise in actual practice 

in formal verification. Most of these procedures 

have their roots in the “DPLL” algorithm for 

Boolean satisfiability, introduced in 1962 by 

mathematicians and computer scientists Martin 

Davis, Hilary Putnam, George Logemann and 

Donald W. Loveland.  Supplied with heuristics 

honed over years of intense competition between 

research groups, today’s highly engineered DPLL 

procedures can tackle huge formulas with millions 

of variables. Already the cornerstone of formal 

verification for chip design, modern SAT solvers 

have immense promise as practical algorithmic 

tools in many other areas.

Abstraction  

Abstraction is the act of isolating for separate 

consideration the important aspects or properties 

of a complex object, and ignoring the remaining 

ones as being irrelevant to the task in hand. A 

fundamental technique for controlling complexity, 

abstraction of various kinds is ubiquitous in 

computer science. The type of abstraction 

most used in formal verification is framed 

mathematically as a “Galois connection”, a specific 

type of correspondence between two partially 

ordered sets. Here, the partial ordering is the 

relationship of satisfaction between formal circuit 

models and the correctness properties we wish 

to show they have. Framing abstractions in this 

way allows computer scientists to characterize 

precisely the conditions under which properties 

obtained on abstracted models are still valid for 

the more complex models they come from.
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